Inflorescences vs leaves: a distinct modulation of carbon metabolism process during Botrytis infection.

نویسندگان

  • Parul Vatsa-Portugal
  • Anne-Sophie Walker
  • Lucile Jacquens
  • Christophe Clément
  • Essaid Ait Barka
  • Nathalie Vaillant-Gaveau
چکیده

Plant growth and survival depends critically on photo assimilates. Pathogen infection leads to changes in carbohydrate metabolism of plants. In this study, we monitored changes in the carbohydrate metabolism in the grapevine inflorescence and leaves using Botrytis cinerea and Botrytis pseudo cinerea. Fluctuations in gas exchange were correlated with variations in chlorophyll a fluorescence. During infection, the inflorescences showed an increase in net photosynthesis (Pn) with a stomatal limitation. In leaves, photosynthesis decreased, with a non-stomatal limitation. A decrease in the effective photosystem II (PSII) quantum yield (ΦPSII) was accompanied by an increase in photochemical quenching (qP) and non-photochemical quenching (qN). The enhancement of qP and ΦPSII could explain the observed increase in Pn. In leaves, the significant decline in ΦPSII and qP, and increase in qN suggest that energy was mostly oriented toward heat dissipation instead of CO2 fixation. The accumulation of glucose and sucrose in inflorescences and glucose and fructose in the leaves during infection indicate that the plant's carbon metabolism is differently regulated in these two organs. While a strong accumulation of starch was observed at 24 and 48 hours post-inoculation (hpi) with both species of Botrytis in the inflorescences, a significant decrease with B. cinerea at 24 hpi and a significant increase with B. pseudo cinerea at 48 hpi were observed in the leaves. On the basis of these results, it can be said that during pathogen attack, the metabolism of grapevine inflorescence and leaf is modified suggesting distinct mechanisms modifying gas exchange, PSII activity and sugar contents in these two organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against botrytis cinerea.

Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid as a pathogenicity factor with a broad action. Consequently, it should be possible to interfere with the infection process by degrading oxalic acid during the interaction of these pathogens with their hosts. We have evaluated the potential of oxalate-degrading bacteria to protect plants against pathogenic fungi. Such bacteria wer...

متن کامل

A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways

A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period ("inflorescences clearly visible" to "berries groat-sized"), the model calculates: i) infection severity on inflorescences and young clusters caused by conid...

متن کامل

Fungicide Efficacy Against Botrytis cinerea at Different Positions on Grape Shoots

Fungicide efficacy at different positions on grape shoots was determined on vinelets inoculated with Botrytis cinerea. To ensure proper fungicide coverage, vinelets (table grape cultivar Dauphine, wine grape cultivar Merlot noir), prepared from cuttings, were sprayed in a spray chamber at the recommended dosages with iprodione, pyrimethanil, cyprodinillfludioxonil and fenhexamid. Vinelets for t...

متن کامل

Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization

Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including...

متن کامل

Targeting the AtCWIN1 Gene to Explore the Role of Invertases in Sucrose Transport in Roots and during Botrytis cinerea Infection

Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiologia plantarum

دوره 154 1  شماره 

صفحات  -

تاریخ انتشار 2015